Что такое HDD, жёсткий диск и винчестер. Что такое жёсткий диск для компьютера Жестком диске а также

Многие из вас знают, что вся информация на компьютере, представленная в виде файлов и папок, хранится на жестком диске. А вот, что такое жесткий диск и для чего он предназначен, правильно ответят не многие. Людям, далёким от программирования очень тяжело представить, каким образом можно хранить информацию на какой-то железяке. Это ведь не шкатулка и не лист бумаги, на котором можно эту самую информацию можно записать и спрятать в шкатулку. Да, жесткий диск это не шкатулка с письмом.

Жесткий диск (HDD, HMDD-от англ. hard (magnetic) disk drive) – это магнитный носитель информации. На компьютерном сленге его называют «винчестер». Он предназначен для хранения информации в виде фотографий, картинок, писем, книг различных форматов, музыки, фильмов, и т.п. Внешне это устройство совсем не похоже на диск. Скорее оно похоже на небольшую прямоугольную железную коробочку.

Внутреннее устройство жесткого диска похоже на старый проигрыватель виниловых пластинок.

Внутри этой металлической коробочки есть круглые алюминиевые или стеклянные пластины-диски, находящиеся на одной оси, по которым перемещается считывающая головка. В отличие от проигрывателя, головка жесткого диска в рабочем режиме не касается поверхности пластин.

Для удобства работы жесткий диск делят на несколько разделов. Это разделение условное. Осуществляется такое при помощи операционной системы или специальными программами. Новые разделы называют логическими дисками. Им присваиваются буквы С, D, E или F. Обычно устанавливается на диск C, а файлы и папки хранят на других дисках, чтобы при крахе системы ваши файлы и папки не пострадали.

Посмотрите видеоролик о том, что такое жесткий диск:

Основные характеристики жестких дисков

  • Форм-фактор – это ширина жесткого диска в дюймах. Стандартный размер для настольного компьютера 3.5 дюйма, а для ноутбуков 2.5 дюйма;
  • Интерфейс – в современных компьютерах используется подключения к материнской плате SATA различных версий. SATA, SATA II, SATA III. В старых компьютерах используется интерфейс IDE.
  • Ёмкость – это максимальное количество информации, которое может хранить жесткий диск, измеряется в гигабайтах;
  • Скорость вращения шпинделя – это количество оборотов шпинделя в минуту. Чем больше скорость вращения диска, тем лучше. Для операционных систем необходимо ставить диски от 7 200 об/мин и выше, а для хранения файлов можно устанавливать диски с меньшей скоростью.
  • Время наработки на отказ – это среднее время безотказной работы, расчитанное производителем. Чем оно больше, тем лучше;
  • Время произвольного доступа — это среднее значение времени, требуемое головке для позиционирования на произвольном участке пластины. Величина не постоянная.
  • Ударостойкость – это способность жесткого диска переносить смену давления и удары.
  • Уровень шума, который издает диск во время работы, измеряется в децибеллах. Чем он меньше, тем лучше.

Сейчас уже есть диски SSD (solid-state drive в простом переводе — твёрдотельный накопитель), которые не имеют ни шпинделя, ни пластин. Это запоминающее устройство на основе микросхем памяти.

Многие слышали такие слова, как HDD , «жесткий диск », «винт » или «винчестер ». Все это слова синонимы одного и того же устройства. Жесткий диск – это устройство хранения и запоминания информации, которое основано на принципах магнитной записи. Винчестер в большинстве современных компьютеров является главным накопителем данных. Он сохраняет в себе информацию даже при выключенном компьютере, его также можно извлечь из системного блока компьютера и подключить к другому ПК .

История появления жесткого диска Главное отличие жесткого диска от дискет – это запись информации на жестких пластинах (алюминиевых или стеклянных), покрытых ферромагнитным материалом, в большинстве случаев двуокисью хрома. Винчестеры чаще всего применяют как несъемный носитель информации , но в последние годы был изобретен съемный жесткий диск , получивший широкое применение. Винчестер обычно совмещают с приводом, накопителем и блоком электроники.

Впервые на компьютерном рынке «винт» появился в далеком 1957 году. Появился на свет он, благодаря компании IBM , задолго до появления персонального компьютера. Он был способен вмещать 5 МБ информации и стоил сумасшедших денег. Чуть позже был разработан 10 МБ жесткий диск, но уже для ПК. Винчестер состоял из 30 дорожек и 30 секторов в каждой. После маркировки «30/30» одноименной с популярным карабином марки «Винчестер » накопитель получил название в разговорной речи «винчестер » или сокращенное «винт». На территории Европы и США этот термин исчез еще в 90-е годы и только в России его продолжают на сленге называть таким образом.

Винчестер состоит из нескольких металлических дисков, покрытых особенным веществом, которое может сохранять магнитное поле. Количество металлических пластин в жестком диске бывает от одной до трех. Такие диски обладают очень гладкой поверхностью и отличной балансировкой. Эти качества необходимы для высокой скорости вращения. Специальные магнитные головки, расположенные по одной с разных сторон дисков, позволяют осуществлять запись на них. Головки обладают магниторезисторными свойствами, чутко реагирующими на изменения магнитного поля через изменения силы тока, возбуждаемого в головке. Получаемый сигнал считывается, а затем преобразуется в цифровую форму. Сама головка под воздействием импульсов тока способна создавать магнитное поле. В зависимости от направления магнитного момента происходит намагничивание участков диска.

Данные на дисках хранятся в так называемых дорожках. По ходу работы винчестера магнитные головки меняют свое месторасположение с одной дорожки на другую. В современных HDD для изменения положения магнитных головок применяется соленоидный привод.

Дорожка состоит из секторов, в каждом из которых хранится 512 байт данных. Наименьший объем диска – это сектор. Произведение цилиндров, секторов и количество головок есть максимально объем, который может храниться на винчестере. Почти все производители стремятся сделать как можно более плотные дорожки и сократить количество дисков.

Во время работы жесткого диска появляются испорченные сектора и дорожки. При низкоуровневом форматировании они специально помечаются и в дальнейшем при работе винчестера не учитываются.

Основные параметры жесткого диска

Основной характеристикой жесткого диска является емкость (объем информации способный вместить в себя). Емкость измеряют в гигабайтах (ГБ ). Один ГБ равен 1000 мегабайтам (МБ ). В свою очередь 1МБ равен 1000 килобайтам (КБ ). Но в информационном мире принята несколько иная система подсчета. Вместо 1000 считают 1024. На это надо обратить внимание. При диагностике компьютера операционная система укажет меньшее количество ГБ , чем указано фирмой-изготовителем.

Другой важной характеристикой является скорость вращения шпинделя. Этот показатель напрямую влияет на скорость работы винчестера (то есть, как быстро будет происходить обмен информацией с другими устройствами компьютера). Чем выше скорость вращения, тем быстрее происходит считывание и запись информации жесткого диска. Для настольных компьютеров неплохим показателем считается 7200 об/мин . При более высоких показателях вращения скорость винчестера значительно увеличивается.

Еще одним важным параметром является время произвольного доступа, тесно связанное со скоростью вращения. Большинство производителей при продажах не указывают этот показатель, но если покопаться в интернете такую информацию можно легко найти. Время произвольного доступа показывает, за какой период жесткий диск прочитает или запишет информацию на любом из участков диска. Этот параметр измеряется в миллисекундах. Чем ниже показатель, тем выше скорость работы винчестера.

Важно знать, каким интерфейсом оснащен «винт ». Простыми словами разъем жесткого диска, которым он присоединяется к материнской плате. Раньше был IDE , но сейчас ему на смену пришел SATA . Последним оборудуются все современные жесткие диски , они быстрее работают и удобнее при установке. Необходимо учитывать, каким интерфейсом оборудована материнская плата. При несовпадении разъемов подключение окажется невозможным.

Бывают еще диски специально для серверов. Они одинаковы по размерам с обычными HDD , но в работе намного шустрее. Скорость вращения таких устройств достигает 15000 об/мин. Они отличаются более высокой надежностью, чем винчестеры для настольных компьютеров. Диски для серверов бывают с последовательным интерфейсом SAS и SATA и параллельным SCSI .

Не так давно были придуманы внешние жесткие диски. Они очень удобны в использовании, обладают меньшими размерами и весом, большими объемами данных. Их еще называют мобильными носителями или «большой флешкой». С помощью внешних HDD удобно переносить различную информацию в виде аудиозаписей, офисных архивов и мультимедийных файлов. Контроллеры способны поддерживать USB 2.0, 3.0 и FireWire.

Средняя скорость вращения жестких дисков для ноутбуков 5400 об/мин или 4200 об/мин. Также, они должны быть ударостойки.

Основные интерфейсы подключения

USB – передача последовательная данных. Пропускная способность USB 1.1 – 12 МБ/с, USB 2.0 – 480 МБ/с USB 3.0 – 5 ГБ/с.

IDE –передача данных параллельная. Пропускная способность примерно 133 МБ/с. Обычно этот интерфейс используется обычно в настольных компьютерах и ноутбуках.

SATA – параллельная передача данных. Пропускная способность около 300 МБ/с. Основной конкурент IDE. SATA более устойчив к помехам и чуть лучше, чем IDE.

SCSI – параллельная передача данных. В основном применяется при работе с серверами. Его отличает высокая производительность и надежность.

Serial Attached SCSI (SAS) – последовательная передача информации. Усовершенствованная версия SCSI с улучшенной производительностью и надёжностью.

FireWire – последовательная передача. Скорость близка к 400 МБ/с. Для работы с видеофайлами – это лучший выбор.

Производители

Еще в конце прошлого века на компьютерном рынке было множество компаний-производителей жестких дисков . Но на данный момент количество фирм заметно сократилось. Некоторые не выдержали конкуренции, другие были куплены более мощными конкурентами, третьи начали заниматься производством отличной от винчестеров продукции.

В середине 90-х годов винчестеры выпускала фирма Conner Peripherials , позже приобретенная Seagate , и Micropolis . Последняя делала высокачественные SCSI накопители премиум-класса для серверов. Компания выпускала весьма дорогую продукцию, но из-за поставок некачественных подшипников шпинделей фирма понесла огромные убытки на возврате и замене винчестеров, а впоследствии разорилась. Она также была выкуплена Seagate.

Популярна и сейчас продукция японской компании Fujitsu . Сейчас она делает ставку на выпуск винчестеров для ноутбуков и SCSI накопители. Но у нее уже не такой оборот, как в прошлом веке. В 2001 году фирма постигла серьезная неудача. В тот год массово выходила из строя микросхема контроллера, в результате компания понесла серьезные финансовые потери, после которых не оправилась до сих пор. А ведь до поломки японская фирма считалась лидером в производстве жестких дисков. Винчестеры этого производителя отличались отличными характеристиками вращающихся поверхностей. В 2009 году массовое производство жестких дисков Fujitsu отошло к Toshiba .

Диски подразделения IBM до начала 2000 года считались эталонными. Но после массовых отказов от накопителей для ПК из-за окисления контактов разъема гермобанки, американское отделение понесло значительные финансовые потери, и было продано Hitachi .

Компания Quantrum оставила яркий след в истории, но из-за массовых поломок HDD в серии СХ , она тоже выпала с компьютерного рынка.

Ведущей в своей области считалась фирма Maxtor. В начале 2001 года она выкупает подразделение Quantrum , занимающееся производством жестких дисков и в наследство получает шлейф проблем купленной компании из-за «тонких» дисков. В 2006 году происходит ее слияние с компанией Seagate .

Весна 2011 году стала последней для Hitachi , очень популярной на рынке жестких дисков . Она приобретена Western Digital , а в том же году подразделение HDD Samsung переходит к Seagate.

Сейчас на рынке винчестеров осталось только три производителя – S eagate, Western Digital и Toshiba . Но в последнее время в связи развитием технологии SSD и появлением внешних жестких дисков, количество компаний готовых предложит новые технологии и разработки начинает опять увеличиваться.


В данной статье будет идти речь только о жестких дисках (HDD) то есть о носителях на магнитных дисках. О SSD будет следующая статья.

Что такое жесткий диск

По традиции, давайте подсмотрим определение жесткого диска в Википедии:
Жесткий диск (винт, винчестер, накопитель на жестких магнитных дисках, НЖМД, HDD, HMDD) - запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.
Используются в подавляющем большинстве компьютеров, а также как отдельно подключаемые устройства для хранения резервных копий данных, в качестве файлового хранилища и т.п.
Чуть-чуть разберемся. Мне нравится термин «накопитель на жестких магнитных дисках«. Эти пять слов передают всю суть. HDD - устройство, предназначение которого длительное время хранить записанные на него данные. Основой HDD являются жесткие (алюминиевые) диски со специальным покрытием, на которое при помощи специальных головок записывается информация.
Не буду рассматривать в деталях сам процесс записи - по сути это физика последних классов школы, и вникать в это, уверен, у вас желания нет, да и статья совсем не о том.
Также обратим внимание на фразу: «произвольного доступа» что, грубо говоря, означает, что мы (компьютер) можем в любое время считать информацию с любого участка ЖД.
Важным является тот факт, что память HDD не энергозависима, то есть не важно подключено питание или нет, записанная на устройство информация никуда не исчезнет. Это важное отличие постоянной памяти компьютера, от временной (ОЗУ).
Взглянув на жесткий диск компьютера в жизни, вы не увидите ни дисков, ни головок, так как все это скрыто в герметичном корпусе (гермозона). Внешне винчестер выглядит так.
Думаю что такое HDD вы поняли. Идем дальше.

Для чего компьютеру нужен жесткий диск

Рассмотрим что такое HDD в компьютере, то есть какую роль он играет в ПК. Понятно, что он хранит данные но, как и какие. Здесь выделим такие функции НЖМД:
- Хранение ОС, пользовательского ПО и их настроек;
- Хранение файлов пользователя: музыка, видео, изображения, документы и т.д;
- Использование части объема жесткого диска, для хранения данных не помещающихся в ОЗУ (файл подкачки) или хранение содержимого оперативной памяти во время использования режима сна;
- Как видим, жесткий диск компьютера не просто свалка из фотографий, музыки и видео. На нем хранится вся операционная система, и помимо этого ЖД помогает справляться с загруженностью ОЗУ, беря на себя часть ее функций.

Из чего состоит жесткий диск

Мы частично упоминали о составных жесткого диска, сейчас разберемся с этим детальнее. Итак, основные составляющие HDD:
- Корпус - защищает механизмы жесткого диска от пыли и влаги. Как правило, является герметичным, дабы внутрь та самая влага и пыль не попадали;
- Диски (блины) - пластины из определенного сплава металлов, с нанесенным с обеих сторон покрытием, на которое и записываются данные. Количество пластин может быть разным - от одной (в бюджетных вариантах), до нескольких;
- Двигатель - на шпинделе которого закреплены блины;
- Блок головок - конструкция из соединенных между собой рычагов (коромысел), и головок. Часть ЖД, которая считывает и записывает на него информацию. Для одного блина используется пара головок, поскольку и верхняя, и нижняя часть у него рабочая;
- Устройство позиционирования (актуатор) - механизм приводящий в действие блок головок. Состоит из пары постоянных неодимовых магнитов и катушки, находящейся на конце блока головок;
- Контроллер - электронная микросхема управляющая работой HDD;
- Парковочная зона - место внутри винчестера рядом с дисками либо на их внутренней части, куда опускаются (паркуются) головки во время простоя, чтобы не повредить рабочую поверхность блинов.
Такое вот незамысловатое устройство жесткого диска. Сформировалось оно много лет назад, и никаких принципиальных изменений в него уже давно не вносились. А мы идем дальше.

Как работает жесткий диск

После того, как на HDD подается питание двигатель, на шпинделе которого закреплены блины, начинает раскручиваться. Набрав скорость, при которой у поверхности дисков образовывается постоянный поток воздуха, начинают двигаться головки.
Данная последовательность (сначала раскручиваться диски, а затем начинают работать головки) необходима для того, чтобы за счет образовавшегося потока воздуха, головки парили над пластинами. Да, они никогда не касаются поверхности дисков, иначе последние были бы моментально повреждены. Тем не менее, расстояние от поверхности магнитных пластин до головок настолько маленькое (~10 нм), что вы не увидите его невооруженным глазом.
После запуска, в первую очередь происходит считывание служебной информации о состоянии жесткого диска и других необходимых сведениях о нем, находящихся на так называемой нулевой дорожке. Только затем начинается работа с данными.
Информация на жестком диске компьютера записывается на дорожки которые, в свою очередь, разбиты на сектора (такая себе разрезанная на кусочки пицца). Для записи файлов несколько секторов объединяют в кластер, он и является наименьшим местом, куда может быть записан файл.
Кроме такого «горизонтального» разбиения диска, есть еще условное «вертикальное». Поскольку все головки объединены, они всегда позиционируются над одной и той же по номеру дорожкой, каждая над своим диском. Таким образом, во время работы HDD головки как бы рисуют цилиндр.
Пока HDD работает, по сути он выполняет две команды: чтение и запись. Когда необходимо выполнить команду записи, происходит вычисление области на диске куда она будет производится, затем позиционируются головки и, собственно, выполняется команда. Затем результат проверяется. Кроме записи данных прямо на диск, информация также попадает в его кеш.
Если контроллеру поступает команда на чтение, в первую очередь происходит проверка наличия требуемой информации в кеше. Если ее там нет, снова происходит вычисление координат для позиционирования головок, дальше, головки позиционируется и считывают данные.
После завершения работы, когда питание винчестера исчезает, происходит автоматическая парковка головок в парковочных зоне.
Вот так в общих чертах и работает жесткий диск компьютера. В действительности же все намного сложнее, но обычному пользователю, скорее всего, такие подробности не нужны, поэтому закончим с этим разделом и пойдем дальше.

Виды жестких дисков и их производители

На сегодняшний день, на рынке существует фактически три основных производителя жестких дисков: Western Digital (WD), Toshiba, Seagate. Они полностью покрывают спрос на устройства всех видов и требований. Остальные компании либо разорились, либо были поглощены кем-то из основной тройки, или перепрофилировались.
Если говорить о видах HDD, их можно разделить таким образом:

1. Для ноутбуков - основной параметр - размер устройства в 2,5 дюйма. Это позволяет им компактно размещаться в корпусе лептопа;
2. Для ПК - в этом случае также возможно использование 2,5″ жестких дисков, но как правило, используются 3,5 дюйма;
3. Внешние жесткие диски - устройства, отдельно подключаемые к ПК/ноутбуку, чаще всего выполняющие роль файлового хранилища.
Также выделяют особый тип жестких дисков - для серверов. Они идентичны обычным ПКшным, но могут отличаются интерфейсами для подключения, и большей производительностью.

Все остальные разделения HDD на виды происходят от их характеристик, поэтому рассмотрим их.

Характеристики жестких дисков

Итак, основные характеристики жесткого диска компьютера:

Объем - показатель максимально возможного количества данных, которые можно будет вместить на диске. Первое на что обычно смотрят при выборе HDD. Данный показатель может достигать 10 Тб, хотя для домашнего ПК чаще выбирают 500 Гб - 1 Тб;
- Форм-фактор - размер жестокого диска. Самые распространенные - 3,5 и 2,5 дюйма. Как говорилось выше, 2,5″ в большинстве случаев, устанавливаются в ноутбуки. Также их используют во внешних HDD. В ПК и на сервера устанавливают 3,5″. Форм фактор влияет и на объем, так как на больший диск может поместиться больше данных;
- Скорость вращения шпинделя - с какой скоростью вращаются блины. Наиболее распространены 4200, 5400, 7200 и 10000 об/мин. Эта характеристика напрямую влияет на производительность, а так же и цену устройства. Чем выше скорость - тем больше оба значения;
- Интерфейс - способ (тип разъема) подключения HDD к компьютеру. Самым популярным интерфейсом для внутренних ЖД сегодня является SATA (в старых компьютерах использовался IDE). Внешние жесткие диски подключаются, как правило, по USB или FireWire. Кроме перечисленных, существуют еще такие интерфейсы как SCSI, SAS;
- Объем буфера (кеш-память) - тип быстрой памяти (по типу ОЗУ) установленный на контроллере ЖД, предназначенный для временного хранения данных, к которым чаще всего обращаются. Объем буфера может составлять 16, 32 или 64 Мб;
- Время произвольного доступа - то время, за которое HDD гарантированно выполнить запись или чтение с любого участка диска. Колеблется от 3 до 15 мс;

Кроме приведенных характеристик также можно встретить такие показатели как:

Скорость передачи данных;
- Количество операций ввода-вывода в сек.;
- Уровень шума;
- Надежность;
- Сопротивляемость ударам и т.д;
На счет характеристик HDD это все.

Что такое HDD, жёсткий диск и винчестер - эти слова являются разными широко распространёнными терминами одного и того же устройства, входящего в состав компьютера. В связи с необходимостью хранения информации на компьютере появились устройства, хранители информации как жёсткий диск и стали неотъемлемой частью персонального компьютера.

Ранее на первых вычислительных машинах информация хранилась на перфолентах - это картонная бумага с пробитыми дырками, следующим шагом человека в развитие компьютера появилась магнитная запись, принцип работы которой сохранён в нынешних жёстких дисках. В отличие от сегодняшних терабайтных HDD, информация для сохранения помещаемая на них насчитывала десятки килобайт, это ничтожные размеры по сравнению с сегодняшней информацией.

Для чего нужен HDD и его функционал

Жёсткий диск - это постоянное запоминающее устройство компьютера, то есть, его основная функция - долговременное хранение данных. HDD в отличие от оперативной памяти не считается энергозависимой памятью, то есть, после отключения питания от компьютера, а потом как следствие и от жёсткого диска, вся информация, ранее сохранённая на этом накопителе, обязательно сохранится. Получается, что жёсткий диск служит лучшим местом на компьютере для хранения личной информации: файлы , фотографии, документы и видеозаписи, явно будут долго храниться именно на нём, а сохранённую информацию можно будет использовать и в дальнейшем в своих нуждах.

ATA/PATA (IDE) - этот параллельный интерфейс служит не только для подключения жёстких дисков, но и устройств для чтения дисков - оптических приводов . Ultra ATA является самым продвинутым представителем стандарта и имеет возможную скорость использования данных информации до 133 мегабайт в секунду. Указанный способ передачи данных считается сильно устаревшим и в сегодняшние дни используются в устаревших компьютерах, на современных системных платах разъёма IDE уже найти не получится.

SATA (Serial ATA) - представляет из себя последовательный интерфейс, который стал хорошей заменой для устаревшего PATA и в отличие от него имеется возможность для подключения только одного устройства, но на бюджетных системных платах, имеется несколько разъёмов для подключения. Стандарт подразделяется на ревизии, имеющие разные скорости передачи/обмена данных:

  • SATA имеет скорость обмена данных возможную до 150 Мб/с. (1.2 Гбит/с);
  • SATA rev. 2.0 - у данной ревизии скорость обмена данными в сравнение с первым SATA интерфейсом выросла в 2 раза до 300 МБ/с (2,4 Гбит/с);
  • SATA rev. 3.0 - обмен данных у ревизии стал ещё выше до 6 Гбит/с (600 МБ/с).

Все вышеописанные интерфейсы подключения семейства SATA взаимозаменяемы, но подключив, например, жёсткий диск с интерфейсом SATA 2 в разъём материнской платы SATA, обмен данных с жёстким диском будет проходит на основе самой старшей ревизии, в данном случает SATA ревизии 1.0.

Жесткий диск

Схема устройства накопителя на жёстких магнитных дисках.

Накопи́тель на жёстких магни́тных ди́сках , НЖМД , жёсткий диск , винче́стер (англ. Hard (Magnetic) Disk Drive, HDD, HMDD ; в просторечии винт , хард , харддиск ) - энергонезависимое перезаписываемое компьютерное запоминающее устройство . Является основным накопителем данных практически во всех современных компьютерах .

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома . В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках 5-10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков, головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Название «Винчестер»

По одной из версий название «винчестер» накопитель получил благодаря фирме 1973 году выпустила жёсткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инженеры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером» .

Физический размер (форм-фактор) (англ. dimension ) - почти все современные ( -2008 года) накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма . Последние чаще применяются в ноутбуках . Так же получили распространение форматы - 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено производство накопителей в формфакторах 8 и 5,25 дюймов.

Время произвольного доступа (англ. random access time ) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик от 2,5 до 16 мс , как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 - 3,7 мс ), самым большим из актуальных - диски для портативных устройств (Seagate Momentus 5400.3 - 12,5 ).

Скорость вращения шпинделя (англ. spindle speed ) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа , марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с большим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (4200, 5400, 7200, 10 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин.

Устройство позиционирования головок состоит из неподвижной пары сильных, как правило неодимовых, постоянных магнитов и катушки на подвижном блоке головок.

Вопреки расхожему мнению, внутри гермозоны нет вакуума . Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом ; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля , который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а так же при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.

Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются - на них формируются дорожки и секторы.

Ранние «винчестеры» (подобно дискетам) содержали одинаковое количество секторов на всех дорожках. На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон. Все дорожки одной зоны имеют одинаковое количество секторов. Однако, на каждой дорожке внешней зоны секторов больше, и чем зона ближе к центру, тем меньше секторов приходится на каждую дорожку зоны. Это позволяет добиться более равномерной плотности записи и, как следствие, увеличения ёмкости пластины без изменения технологии производства.

Границы зон и количество секторов на дорожку для каждой зоны хранятся в ПЗУ блока электроники.

Кроме того, в действительности на каждой дорожке есть дополнительные резервные секторы. Если в каком либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remaping ). Конечно, данные, хранившиеся в нём, скорее всего, будут потеряны, но ёмкость диска не уменьшится. Существует две таблицы переназначения: одна заполняется на заводе, другая в процессе эксплуатации.

Таблицы переназначения секторов также хранятся в ПЗУ блока электроники.

Во время операций обращения к «винчестеру» блок электроники самостоятельно определяет, к какому физическому сектору следует обращаться и где он находится (с учётом зон и переназначений). Поэтому со стороны внешнего интерфейса «винчестер» выглядит однородным.

В связи с вышеизложенным существует очень живучая легенда о том, что корректировка таблиц переназначения и зон может увеличить ёмкость жёсткого диска. Для этого существует масса утилит, но на практике оказывается, что если прироста и удаётся добиться, то незначительного. Современные диски настолько дёшевы, что подобная корректировка не стоит потраченных на это ни сил, ни времени.

Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управление шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала .

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления , принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнении принятого сигнала с образцами. При этом выбирается образец наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

Технологии записи данных

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них, изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи

На данный момент это всё ещё самая распространенная технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей - доменов . Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи

Метод перпендикулярной записи - это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных образцов - 15-23 Гбит/см², в дальнейшем планируется довести плотность до 60-75 Гбит/см².

Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat-assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, но их плотность уже превышает 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см². Широкого распространения данной технологии следует ожидать после 2010 года.

Сравнение интерфейсов

Пропускная способность, Мбит/с Максимальная длина кабеля, м Требуется ли кабель питания Количество накопителей на канал Число проводников в кабеле Другие особенности
Ultra 2 40/80 Controller+2Slave, горячая замена невозможна
FireWire /400 400 Да/Нет (зависит от типа интерфейса и накопителя) 63 4/6
FireWire /800 800 4,5 (при последовательном соединении до 72 м) Нет 63 4/6 устройства равноправны, горячая замена возможна
USB 2.0 480 5 (при последовательном соединении, через хабы , до 72 м) Да/Нет (зависит от типа накопителя) 127 4
Ultra-320
SAS 3000 8 Да Свыше 16384 горячая замена; возможно подключение
eSATA 2400 2 Да 1 (с умножителем портов до 15) 4 Host/Slave, горячая замена возможна

Читайте также: